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Abstract

An analytical molecular structural mechanics model for the prediction of mechanical properties of defect-free carbon
nanotubes is developed by incorporating the modified Morse potential with an analytical molecular structural model.
The developed model is capable of predicting Young�s moduli, Poisson�s ratios and stress–strain relationships of carbon
nanotubes under tension and torsion loading conditions. Results on the mechanical properties of single-walled carbon
nanotubes show that Young�s moduli of carbon nanotubes are sensitive to the tube diameter and the helicity. Young�s
moduli of both armchair and zigzag carbon nanotubes increase monotonically and approach Young�s modulus of
graphite when the tube diameter is increased. The nonlinear stress–strain relationships for defect-free nanotubes have
been predicted, which gives a good approximation on the ultimate strength and strain to failure of nanotubes. Armchair
nanotubes exhibit higher tensile strength than zigzag nanotubes but their torsion strengths are identical based on the
present study. The present theoretical investigation provides a very simple approach to predict the mechanical proper-
ties of carbon nanotubes.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The discovery of carbon nanotubes at the beginning of last decade (Iijima, 1991) has stimulated extensive
research activities devoted entirely to nano-structures and their applications in materials science, chemistry,
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physics and engineering due to their exceptional physical properties: small size, low density, high stiffness,
high strength and excellent electronic and thermal properties (Dresselhaus et al., 1996; Che et al., 2000;
Nardelli et al., 2000; Yakobson and Avouris, 2001; Thostenson et al., 2001; Qian et al., 2002; etc.). Due
to the high specific stiffness and strength, nanotubes represent a very promising material as reinforcements
in composite materials.

Elastic properties of both multi- and single-walled nanotubes (SWNT) have been investigated extensively
through experimentation (Treacy et al., 1996; Krishnan et al., 1998) and theoretical approaches (Yakobson
et al., 1996; Wong et al., 1997; Yao and Lordi, 1998; Salvetat et al., 1999; Hernandez et al., 1999;
Sanchez-Portal et al., 1999; Van Lier et al., 2000; Belytschko et al., 2002; etc.). SWNTs are remarkably stiff
and strong. The tensile modulus and strength of nanotubes have been reported (Lourie and Wagner, 1998;
Li et al., 2000) to range from 0.27 TPa to 3.6 TPa and 11 to 200 GPa, respectively. It is generally recognized
that mechanical properties of nanotubes are dependent upon their structural details. For small single-
walled nanotubes, although some results indicated that elastic properties are insensitive to the size of nano-
tubes (Lu, 1997; Jin and Yuan, 2002), quantum mechanics based computations have shown that Young�s
modulus increases with the tube diameter (Goze et al., 1999; Hernandez et al., 1999). Popov et al. (2000)
derived some analytical expressions for the size-dependent elastic properties of single-walled nanotubes
using Born�s perturbation technique within a lattice-dynamics framework.

The theoretical approaches can be classified into two categories: namely the ‘‘bottom up’’ approach
based on quantum/molecular mechanics including the classical molecular dynamics (MD) and ab initio

methods, and the ‘‘top down’’ approach based on continuum mechanics. In general, ab initio methods give
more accurate results than MD, but they are also much more computationally expensive (only suitable for
small systems containing at most hundreds of atoms). As indicated by Qian et al. (2002), despite constant
increases in available computational power and improvement in numerical algorithms, even classical molec-
ular dynamics computations are still limited to simulating on the order of 106–108 atoms for a few nano-
seconds. The simulation of larger systems or longer times must currently be left to continuum methods.
However, at the nanoscale, theories for describing continuum materials have reached their limit. The accu-
racy of using these continuum theories becomes questionable in many of the most interesting cases of
nanomechanics. Thus it would be very useful to have a nanomechanics theory that is seamless and generic
to bridge the gap. Although several promising methods and approaches spanning multiple length scales
have been developed towards achieving this goal (Tadmor et al., 1996; Abraham et al., 1998; Shenoy et
al., 1999; Rudd and Broughton, 2000; Belytschko and Xiao, 2003; Xiao and Belytschko, 2004; Chung
and Namburu, 2003; Qian et al., 2002), the link between atomistic and continuum descriptions of material
properties is still not well established.

Some recent developments based on continuummechanics have been reported for estimating elastic prop-
erties of nanotubes. Odegard et al. (2002) developed a continuummodel to obtain a relation between effective
bending rigidity and molecular properties of a graphene sheet by equating the molecular potential energy of
nanotubes to the mechanical strain energy of a representative continuum truss model. Li and Chou (2003)
developed a continuum mechanics model for mechanical properties of nanotubes successfully by linking
the molecular mechanics constants of force fields and frame sectional stiffness parameters. Size-dependent
Young�s moduli and shear moduli of armchair and zigzag nanotubes have been predicted. Most recently,
an analytical molecular mechanics model has been proposed by Chang and Gao (2003) to relate the elastic
properties of a single-walled carbon nanotube to its atomic structure with calibrated force field constants.
The developed approach is concise but capable of deriving closed form expressions for Young�s modulus
and Poisson�s ratio as a function of the atomic structure of the nanotube. The force constants are determined
by calibrating the model with experimental in-plane elastic constants of graphene sheet. Only tensile proper-
ties were studied by Chang and Gao (2003). However, all of the above-mentioned methods can only predict
elastic constants like Young�s moduli and/or Poisson�s ratio of nanotubes because they were based on the
force-field constants that imply that harmonic energy potential functions were used. In order to model the
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mechanical behavior of nanotubes up to or beyond bond breaking, a more complex interatomic potential
function has to be used. The Brenner potential function (Brenner, 1990) is considered more accurate and is
more versatile, and it can handle changes in atom hybridization and bonds with atoms other than carbon.
A continuum mechanics approach directly incorporating the Brenner potential function has been developed
by Zhang et al. (2002) and Jiang et al. (2003) to model elastic properties and stress–strain relationships of car-
bon nanotubes based on a modified Cauchy–Born rule. The continuum strain energy density is obtained by
averaging the energy stored in atomic bonds over bond orientations. Using the work-conjugate relationship
between stress and strain, the stress and incremental modulus are derived from the strain energy density.

In this paper, we present a simple analytical molecular structural mechanics model incorporating the
modified Morse potential function (Belytschko et al., 2002) to estimate elastic constants and stress–strain
relationships of nanotubes under tensile and torsion loadings. The analytical model originated from Chang
and Gao (2003) and was extended to model the torsion behavior of carbon nanotubes. By incorporating the
modified Morse potential we are able to predict the mechanical properties not only Young�s moduli and
Poisson�s ratio, but also the stress–strain relationships, hence, the strength and strain to failure of nano-
tubes. Detailed derivations are presented and the predicted results are demonstrated and discussed with
a few computational examples. The present study shows that it is possible to develop analytical methodol-
ogies based on molecular mechanics to quantify mechanical behavior of a nanotube. The results are com-
parable to the corresponding published results from experiments, tight binding or molecular dynamics
numerical calculations for armchair and zigzag carbon nanotubes.
2. Interatomic potential functions

There are several different potential functions available (Abell, 1985; Tersoff, 1988; Brenner, 1990) for
describing C–C bond other than simple harmonic functions. Generally, the Tersoff–Brenner potential func-
tion is more accurate but it is complicated as presented in the atomistic-based analytical model by Jiang
et al. (2003). Considering a single-walled carbon nanotube subjected to tension and torsion loadings, only
bond stretching and angle variation terms are significant in the total system potential energy. The modified
Morse potential function in Belytschko et al. (2002) is simple and is used in the present study. The modified
Morse potential function was correlated to the Brenner potential function for strains below 10%. By using
the simplified potential function in their molecular mechanics/dynamics models, Belytschko et al. (2002)
studied the fracture behavior of nanotubes and excellent predictions have been achieved. The modified
Morse potential function is given as follow:
E ¼ Estretch þ Eangle ð1Þ

Estretch ¼ Def½1� e�bðDrÞ�2 � 1g ð2Þ

Eangle ¼
1

2
khðDhÞ2½1þ ksexticðDhÞ4� ð3Þ
where Estretch is the bond energy due to bond stretch Dr, and Eangle is the bond energy due to bond angle
variation Dh. The parameters calibrated by Belytschko et al. (2002) with the Brenner potential are as
follows:
De ¼ 0:6031 nN 
 nm; b ¼ 26:25 nm�1 ð4Þ

kh ¼ 1:42 nN 
 nm=rad2; ksextic ¼ 0:754 rad�4 ð5Þ

This set of parameters corresponds with the Brenner potential for strain below 10% and a separation (dis-
sociation) energy of 124 kcal/mol (5.62 eV/atom).
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As shown in the study by Belytschko et al. (2002), the force field shape of this simple potential function is
essentially the same as that of the Brenner potential function before the inflection point (i.e. the maximum
of the interatomic force) and totally different after the inflection point. The validation of using this simple
interatomic potential function has been well studied by Belytschko et al. (2002) who reported that the frac-
ture is essentially independent of the separation energy and depends primarily on the inflection point of the
interatomic potential. Consequently, the shape of the potential function after the inflection point is not
important to fracture behavior.

In this paper, a slightly modified value has been used for the constant kh which is taken from Chang and
Gao (2003). As pointed out by Belytschko et al. (2002) the bond-angle-bending energy does not contribute
to the stretch energy and has little effect on fracture. However, the bond-angle-bending potential plays an
essential role in establishing an equilibrium configuration of the nanotube and it is associated with Young�s
modulus of the nanotube.

The stretch force and the angle-variation moment can be obtained from differentiations of Eqs. (2) and
(3) as functions of bond stretch and bond angle variation, respectively:
F ðDrÞ ¼ 2bDeð1� e�bDrÞe�bDr ð6Þ

MðDhÞ ¼ khDh½1þ 3ksexticðDhÞ4� ð7Þ
3. Molecular structural mechanics of nanotubes

A single-walled carbon nanotube can be viewed as a hollow cylinder rolled from a graphene sheet. The
nanotube, composed of carbon hexagons, is usually indexed by a pair of integers (n1, n2) to represent its
helicity. The diameter of the nanotube can be calculated as
D ¼
ffiffiffiffiffi
3a

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn21 þ n22 þ n1n2Þ

q
ð8Þ
where a = 0.142 nm is the C–C bond length.
Only two types of nanotubes: armchair (n1 = n2) and zigzag (n2 = 0) nanotubes subjected to tensile and

torsion loadings are studied in this paper.

3.1. Tensile response models

An armchair nanotube (n1 = n2) subjected to a longitudinal tensile stress is studied first. Fig. 1 shows an
equilibrium configuration of the tube and the associated forces and moments in three chemical bonds a, b,
b, and three bond angles a, b, b resulting from a bond elongation Da and two bond angle variances Da and
Db. The relationship between stress and the bond stretch and bond angle variation can be determined
through equilibrium and geometry of the tube structure.

Similar to the idea of modeling the molecular structure as an effective ‘‘stick-spiral’’ system by Chang
and Gao (2003), we use a stick with Eq. (6) to model the force-stretch relationship of the C–C bond and
a spiral spring with Eq. (7) to model the angle bending moment resulting from an angular variation of bond
angle. The stick is assumed to have an infinite bending stiffness.

Consider the force and moment acting on bond OA as shown in Fig. 1b. Force equilibrium to bond
extension of stick OA leads to
f sin
a
2

� �
¼ F ðDbÞ ð9Þ
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Fig. 1. Schematic illustration of (a) an armchair carbon nanotube, (b) analytical model for tension, and (c) geometry relationship.
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The moment equilibrium to bond OA gives
f
b
2
cos

a
2

� �
¼ MðDaÞ þMðDbÞ cosu ð10Þ
where / is the torsion angle between planes OA–OB and OA–OC, which is calculated as
cosu ¼ �
tan a

2

� �
tan b

ð11Þ
For the armchair nanotube, the geometry relationships satisfy
cos b ¼ cos p � p
2n1

� �
cos

a
2

� �
ð12Þ
where p � p
2n1

is the angle of the bond OC to the plane OA–OB as shown in Fig. 1c.
Differentiating Eq. (12), one has
Db ¼ �
sin a

2

� �
2 sin b

cos
p
2n1

Da ð13Þ
In the undeformed configuration, we take the relation a = b though the calculation from Brenner potential
function (Jiang et al., 2003) indicates that the bond length a and b are slightly different when the tube diam-
eter changes.

The axial stress r in the armchair nanotube can be defined as
r ¼ f
tb 1þ cos a

2

� �� � ð14Þ
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where t is the nanotube thickness and has been commonly assumed to be the interlayer spacing (0.34 nm) of
graphite. The axial strain e and circumferential strain e 0 of armchair nanotube can be calculated as
e ¼
Db sin a

2

� �
þ b

2
cos a

2

� �
Da

b sin a
2

� � ð15Þ

e0 ¼
Db cos a

2

� �
� b

2
sin a

2

� �
Da

aþ b cos a
2

� � ð16Þ
Then, Poisson�s ratio can be defined as
m ¼ � e0

e
ð17Þ
The numerical procedure for stress–strain relationship is given as follows:

(1) For any given bond stretch Db
(2) Determine f using Eqs. (9) and (6)
(3) Calculate stress at the current state using Eq. (14)
(4) Identify an equilibrium geometry with Da and Db corresponding to Db

(a) Loop over angular variation Da
(i) Obtain angular variation Db using Eq. (12)
(ii) Calculate M(Da) and M(Db) using Eq. (7)
(iii) Exam the moment equilibrium equation (10)
(b) End the angular variation loop
(5) Calculate strain at the current state using Eq. (15)

It should be noted that the angle a and b of armchair nanotubes have been found from ab initio calculations
(Ye et al., 2001) where a 
 2p/3 and b ¼ p � arccos½0:5 cosðp=2n1Þ�.

For a zigzag nanotube under tensile stress, the nomenclature and force and moment are shown in Fig. 2.
The angle between planes OA–OB and OA–OC is given as
cosu ¼ �
tan b

2

� �
tan a

ð18Þ
and the relationship between a and b leads to
Db ¼ 2 cos a

cos b
2

cos
p
n1

Da ð19Þ
With force equilibrium of stick OA, one has
f ¼ F ðDaÞ
cosðp � aÞ ð20Þ
so the stress can be calculated as
r ¼ f
ta sinðp � aÞ ð21Þ
Considering the force equilibrium at point O, the stretch of stick OC can be related to the stretch of the
stick OA by
F ðDbÞ ¼ 2f ð22Þ
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Fig. 2. Schematic illustration of (a) a zigzag carbon nanotube, and (b) analytical model for tension.
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The moment equilibrium to bond OA leads to
f
a
2
sinðp � aÞ ¼ MðDaÞ þMðDbÞ cosu ð23Þ
The axial strain e and circumferential strain e 0 of the zigzag nanotube can be calculated as
e ¼ Dbþ Da cosðp � aÞ þ a sinðp � aÞDa
bþ a cosðp � aÞ ð24Þ

e0 ¼ Da sinðp � aÞ � a cosðp � aÞDa
a sinðp � aÞ ð25Þ
The stress–strain relationship for a zigzag tube is calculated in a similar manner to the armchair nanotube
described above. For any bond stretch Da, one can identify an unique equilibrium geometry with Db, Da
and Db corresponding to Da, such that the stress and strain can be calculated using Eqs. (21), (24) and
(25). The approximate expressions of the angle a and b for zigzag nanotubes are taken as a 
 2p/3 and
b ¼ arccos½0:25� 0:75 cosðp=n1Þ� from ab initio calculation (Ye et al., 2001). It should be noted that when
one takes a = b = 2p/3 and n1 ! 1 the above procedures give the stress–strain relationship of the graphene
sheet which is identical from both procedures.

3.2. Torsion response models

In this section, the shear behavior of nanotubes subjected to torsion loading is analyzed. Fig. 3 illustrates
the forces and nomenclatures for analysis of armchair nanotube under the shear stress s. The lengths of
three bonds are a, b and c, respectively. The shear stress in two directions is same and can be defined as
s ¼ f1
ta sin a

2

� � ð26Þ
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Fig. 3. Analytical model of an armchair carbon nanotube in shear.
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s ¼ f2
ta 1þ cos a

2

� �� � ð27Þ
Then, one has
f2 sin
a
2

� �
¼ f1 1þ cos

a
2

� �� �
ð28Þ
The force equilibrium on bond OA leads to
f1 sin
a
2

� �
þ f2 cos

a
2

� �
¼ F ðDaÞ ¼ �F ð�DbÞ ð29Þ
So the shear stress can be given as
s ¼ F ðDaÞ
ta 1þ cos a

2

� �� � ð30Þ
With the moment equilibrium on bond OA, one has
f2
a
2
sin

a
2

� �
� f1

a
2
cos

a
2

� �
¼ MðDbÞ cosu ð31Þ
where cosu is defined by Eq. (11). Substituting Eq. (28) into Eq. (31), one obtains
a
2
f1 ¼ MðDbÞ cosu ð32Þ
The shear strain of armchair nanotubes can be calculated as
c ¼
cDb þ Db sin a

2

� �
a 1þ cos a

2

� �� � þ
ðDaþ DbÞ cos a

2

� �
2b sin a

2

� � ð33Þ
Then the shear modulus can be obtained as
G ¼ s
c

ð34Þ
Again for any given bond stretch Da, one can find an unique equilibrium configuration which satisfies all
equations (26)–(34) described above, so that the shear stress–strain relationship is predicted analogous to
the procedure for tensile behavior.
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Fig. 4. Analytical model of a zigzag carbon nanotube in shear.
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A zigzag nanotube under shear stress is depicted in Fig. 4. The associated variables can be defined as
f1 ¼ sbt sinðp � aÞ ð35Þ

s ¼ F ðDaÞ
tað1þ cosðp � aÞÞ ð36Þ

F ðDaÞ ¼ �F ð�DbÞ ð37Þ

a
2
f1 ¼ MðDaÞ cosu ð38Þ
and the shear strain c of zigzag nanotube can be calculated as
c ¼ cDa þ Db sinðp � aÞ
að1þ cosðp � aÞÞ þ ðDaþ DbÞ cosðp � aÞ

2b sinðp � aÞ ð39Þ
Then, the shear stress–strain relationship for a zigzag tube under torsion loading is defined through Eqs.
(35)–(39).
4. Results and discussions

4.1. Tensile behaviors

In this section, we present the predicted Young�s modulus of nanotubes followed by their stress–strain
relationships. It is known that there is a large variation of Young�s moduli of nanotubes among published
data from both experimental and theoretical studies. Krishnan et al. (1998) presented the experimental
data as 1.3 �0.4/+0.6 TPa. Salvetat et al. (1999) measured Young�s modulus of nanotubes as
0.816 ± 0.41 TPa. Variation from experimental results may be due to the presence of defects in nanotube
specimens and inherent limitations of current experimental techniques. Different theoretical values can
result from using different definitions of the effective thickness of nanotube, and by using different potential
functions (force-constants) with different algorithms. For instance, Yakobson et al. (1996) used a thick-
ness of 0.066 nm resulting in the graphite Young�s modulus of 5.5 TPa. In order to avoid the confusion
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on thickness definition, one can use in-plane stiffness as the product of the conventional Young�s modulus
with the tube thickness. As reviewed by Pantano et al. (2004) most quantum/molecular mechanics simula-
tions resulted in similar graphite in-plane stiffness around 59 eV/atom = 360 J/m2 though different effective
thicknesses were assumed. It should be noted that the definition of effective thickness of nanotube does not
affect in-plane properties in the present study. However, in order to compare the present results with recent
progress (Belytschko et al., 2002; Jiang et al., 2003; Chang and Gao, 2003; Li and Chou, 2003) on nanotube
mechanics, a thickness of 0.34 nm is used in the present study. Another interesting phenomena observed
from theoretical investigations (such as the tight-binding results given by Goze et al. (1999), lattice-dynam-
ical results given by Popov et al. (2000), atomistic-based continuum mechanics by Jiang et al. (2003), struc-
tural mechanics by Li and Chou (2003), and analytical molecular mechanics by Chang and Gao (2003)) is
that Young�s moduli are size-dependent at small tube diameters. Again due to the limitations of current
experimental techniques it is hard to validate/extract such dependence experimentally.

Although there is discrepancy on Young�s modulus of nanotubes it has been commonly recognized that
nanotubes with large diameters have the same modulus as that of graphite and small diameter nanotubes
exhibit some size-dependence. Experimental value for graphite (Blakslee et al., 1970) is about 1.06 TPa (cor-
responding to an in-plane stiffness of 360 J/m2).

Available theoretical graphite values include 1.16 TPa (also size-independent nanotube value) by
Belytschko et al. (2002) using molecular mechanics/dynamics with the modified Morse potential and
1.50 TPa by Overney et al. (1993) using MD with the Keating potential. Based on a lattice dynamics model
with empirical force-constants, Lu (1997) calculated graphite (also nanotubes) Young�s modulus to be
about 0.972 TPa and Popov et al. (2000) gave results around 1.0 TPa for graphite. Li and Chou (2003) pre-
sented Young�s modulus of carbon nanotube with larger diameters as 1.025 TPa using structural mechan-
ics. Chang and Gao (2003) gave a graphite value of 1.06 TPa (360 J/m2) using the same analytical structural
model as the present investigation, but with force-constants (harmonic potential). The tight-binding meth-
ods also showed significant scatter in Young�s modulus values with variations from 0.676 TPa (Molina
et al., 1996) to 1.27 TPa (Goze et al., 1999). There are also many other predictions available in the literature.

Fig. 5 shows the calculated initial Young�s modulus of nanotubes from the present models. The predicted
Young�s modulus of graphene sheet is 1.13 TPa (corresponding to an in-plane stiffness of 383 J/m2), which
agrees well with the experimental value and other theoretical values mentioned above. Differences between
the experimental and theoretical graphite results may be due to the potential function and associated
parameters. The simplified potential is correlated to the Brenner potential which is considered to be accu-
rate. It should be noted that there are two different sets of parameters for carbon and hydrocarbons deter-
mined by Brenner through a best-fit of the potential to the binding energy of the C2 diatomic molecule, and
the binding energies and lattice constants of graphite, diamond, simple cubic, and face-centered-cubic
(FCC) structures for pure carbon. Each set of parameters yielded different results and neither sets of param-
eters could fit C–C stretching force constants and bond lengths simultaneously. The parameters in the mod-
ified Morse potential corresponds to the second Brenner function that gives closer stretching force
constants to experimental values but not identical (about 8% difference for double bonds). Approaches
to select parameters that improve accuracy are beyond the scope of this research.

It is seen from Fig. 5 that the feature of the size-dependent Young�s moduli is captured by the present
simple model and Young�s moduli for both armchair and zigzag nanotubes decrease with decreasing tube
diameter and approach the predicted graphite value when the tube diameter is increased. For a given tube
diameter, Young�s modulus of armchair tubes is slightly larger than that of zigzag tubes. The maximum
difference of armchair nanotube�s moduli is less than 5% and could be considered size-independent. At
small diameter (<2 nm), zigzag nanotubes exhibit a higher sensitivity of moduli to tube diameter as shown
in Fig. 5 with a difference up to 19%. Some published data are also shown in Fig. 5 for comparison. The
present model gives almost same trend as those of the tight-binding formulation by Goze et al. (1999) and
continuum structural mechanics by Li and Chou (2003) although there exists difference at the plateau
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level. It is interesting that when different values are normalized by their corresponding asymptotic value (i.e.
predicted graphite value for large tube diameters), one obtains almost identical curves as shown in Fig. 6. In
summary, the present values for single-walled nanotubes are in reasonable agreement with other theoretical
and experimental values.
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It should be noted that all above-mentioned Young�s moduli are the initial tangent modulus of carbon
nanotubes. Secant moduli at different strains will be presented later in this section to illustrate the degree of
nonlinearity in the stress–strain curve predicted prior to failure.

The dependence of Poisson�s ratio to the tube diameter is shown in Fig. 7. The present predicted
Poisson�s ratio for both armchair and zigzag tubes decrease with increasing tube diameter, approaching
the limit value of 0.20 for graphene sheet. It is seen that Poisson�s ratio for zigzag tubes is more sensitive
to the tube diameter than the armchair tubes. The results given by Popov et al. (2000) show the same trend
as the present results for armchair tubes, but a different trend for zigzag tubes. It should be noted that the
present prediction for large diameter nanotubes (>2 nm) and graphite is almost constant and in excellent
agreement with the theoretical value (0.21) of Popov et al. (2000) based on a lattice-dynamics model.
Although many investigations for Poisson�s ratio of nanotubes have been conducted, there is no unique
opinion that is widely accepted. The study by Lu (1997) showed that Poisson�s ratio for single-walled nano-
tubes is almost a constant of 0.28. The tight-binding calculations (Goze et al., 1999) gave values of 0.247,
0.256 for (6, 6), (10, 10) armchair tubes and values of 0.275, 0.270 for (10, 0), (20, 0) zigzag tubes.

The stress–strain relationship of nanotubes is predicted using the above procedures up to the inflection
point (i.e. the maximum of the interatomic force) only, though the procedure is able to give the post failure
as the study by Jiang et al. (2003). However, the predicted post failure by the present model may not be
reliable because the present model together with the simple interatomic potential function is not capable
of describing the behaviors of the nanotube after the bonds are broken, such as formation of new bonds,
rehybridization and structural transformations. From the experimental (Yu et al., 2000) and theoretical
studies (Belytschko et al., 2002) on the tensile behaviors of nanotubes, it was found that the stress exhibits
a sudden drop to zero when stress reaches the tensile strength and the fracture is brittle.

Fig. 8 shows the calculated stress–strain relationships for armchair and zigzag nanotubes. Only four dif-
ferent types of nanotubes (i.e. (4, 4), (12, 12) armchairs, and (4, 0), (20, 0) zigzags) are presented for illus-
tration purpose. It should be noted that the present approach is developed based on the assumption of
defect-free molecular structures so the predicted strengths are identical for the same type of helicity. The
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Fig. 7. Poisson�s ratios of carbon nanotubes versus tube diameter.
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Fig. 8. Tensile stress–strain curves for armchair and zigzag nanotubes.
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tensile behaviors of armchair nanotubes are almost identical with slightly different ultimate strains as the
nanotube diameter changes because Young�s moduli of this nanotube are less sensitive to their sizes as dis-
cussed above. Nevertheless, the tensile responses of zigzag nanotubes are much more sensitive to their
diameter. As can be seen from Fig. 8, the predicted tensile strength (126.2 GPa) of armchair nanotubes
is stronger than that (94.5 GPa) of zigzag nanotubes. The present predictions on strength of nanotubes
show agreement with the calculated results from the molecular mechanics (Belytschko et al., 2002) where
the tensile strength of 112 GPa and failure strain of 18.7% were predicted for (12, 12) armchair nanotube
and 93.5 GPa and 15.2% for (20, 0) zigzag nanotube. The predicted failure strains in the present study are
23.1% for armchair nanotubes and 15.6–17.5% for zigzag nanotubes. Again these predictions agree well
with the numerical results of Belytschko et al. (2002). The predicted nonlinear behaviors of nanotubes
are also very similar to those modeled by using molecular mechanics (Belytschko et al., 2002). It should
be noted that the predicted strengths and failure strains are significantly higher than the experimental values
(11–63 GPa for strengths and 10–13% for failure strains) of Yu et al. (2000). This issue can be partially
explained by the presence of defects. Another possible reason, as discussed by Belytschko et al. (2002),
is that some slippage might occur at the attachments for the high-strain cases reported in Yu et al.
(2000) resulting in a decrease in the measured values of Young�s modulus and the failure strains. Because
of the nonlinearity of stress–strain relationships, we also present the calculated secant modulus versus strain
(up to 10%) for different nanotubes. In Fig. 9 it can be seen that the secant moduli decreases by 20–28%
from the initial tangent moduli as the strain increases to 10% for each type of nanotubes.

4.2. Torsion response

The torsion response of nanotubes has received much less attention than the tensile behavior of nano-
tubes. There still exists difficulty in experimental techniques to measure either their modulus or strength.
Theoretical studies have been conducted by Lu (1997), Popov et al. (2000) and Li and Chou (2003). The
size-dependence of shear moduli was observed in all the above three references, though slightly different
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values for graphite and nanotubes with large diameters are predicted. The predicted graphite values for the
shear modulus are 0.41 TPa by Popov et al. (2000), around 0.48 TPa by Lu (1997), and Li and Chou (2003).
The shear modulus of the nanotube at small diameters is reduced from the graphite value by about 8% as
predicted by Lu (1997) and 50% by Li and Chou (2003).

Fig. 10 shows the initial tangent shear moduli of nanotubes from the present study. It is seen that shear
moduli for both armchair and zigzag nanotubes increase with increasing tube diameter and approach the
predicted graphite value for larger diameter (>2 nm). The predicted graphite shear modulus of the present
study is 0.47 TPa which shows good agreement with the experimental value (0.44 ± 0.3 TPa) of Blakslee
et al. (1970), and is almost the same as other theoretical values reported by Lu (1997) and Li and Chou
(2003). From the present study, it is shown that shear modulus of armchair and zigzag tubes possess similar
size-dependent trends and similar finding has been reported by Li and Chou (2003) that the effect of tube
chirality on the shear modulus is not significant based on their structural mechanics model. The size-effect
on shear moduli from the present study is about 17% for small diameter nanotube compared with graphite
value. Some published data are also included in Fig. 10 for comparison. Again there is discrepancy between
experimental graphite result and theoretical values. Normalized shear moduli are presented in Fig. 11 to
compare the size effect from different models. It can be seen that results by Li and Chou (2003) show higher
size effect than the present study and results by Popov et al. (2000). The present study shows similar trends
for zigzag tubes as that of Popov et al. (2000), but different in armchair tubes with which Popov et al. (2000)
gave size-independent shear moduli. Jiang et al. (2003) also studied single-walled carbon nanotubes in pure
torsion and presented relationships between the torque and the twist angle for several zigzag and armchair
nanotubes. No specific value was reported for the shear modulus of nanotubes, but the normalized torque–
twist curves indicated the shear moduli of armchair nanotubes are more sensitive to the tube diameter than
zigzag nanotubes, and zigzag nanotubes possess higher resistance against torsion than armchair nanotubes.

Fig. 12 shows the calculated stress–strain relationships for armchair and zigzag nanotubes subjected to
torsion loadings. Again, the four different types of nanotubes (i.e. (4, 4), (12, 12) armchairs, and (4, 0),
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(20, 0) zigzags) are presented for illustration. The stress–strain relationships are calculated up to the inflec-
tion point as we did for tensile response though we do not know the failure modes when nanotubes are
subjected to torsion loadings. Determination of such failure modes relies on experiments and quantum
mechanics or MD simulations. Based on MD simulations with Brenner�s many-body interatomic potential,
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Yakobson et al. (1996) indicated that nanotubes under torsion loading lead to a snap-through buckling
without any bond breaking or switching. Unfortunately no specific value on critical buckling loading/
strength was reported. The present study aims to give a reference value for this loading condition. We
expect the predicted value should serve as the upper limit of the shear strength.

From Fig. 12, it can be seen that the present approach gives the same predicted strength for both types of
nanotubes but with different failure strains. The predicted shear strength is 108 GPa. The stress–strain
curves of (12, 12) armchair and (20, 0) zigzag nanotubes are identical because they have almost the same
diameter. Smaller nanotube diameters give slightly higher failure strains, and the predicted failure strains
range from 27% to 33%. It should be noted that the shear stress–strain relationships are almost linear
up to the ultimate values for all examined nanotubes which implies the shear modulus for each tube is
insensitive to strain from the present study.
5. Conclusions

By incorporating the modified Morse potential function into an analytical molecular structural mechan-
ics model, the mechanical responses of armchair and zigzag nanotubes in tension and torsion conditions are
investigated. The present approach is capable of predicting Young�s moduli, Poisson�s ratios, and stress–
strain relationships of nanotubes. The analytical molecular mechanics model developed by Chang and
Gao (2003) was extended to torsion loading condition. By incorporating the modified Morse potential into
the developed model we have predicted the tensile and shear strengths and corresponding failure strains of
single-walled carbon nanotubes. Young�s moduli and Poisson ratios of nanotubes have been found to be
sensitive to their sizes and chirality. Generally zigzag nanotubes exhibit higher sensitivity than armchair
nanotubes when they are subjected to tensile loading. However, their shear moduli are insensitive to their
chirality and show the same size-dependent trends for both armchair and zigzag nanotubes. The less depen-
dence of shear modulus on chirality in the present study may be due to the absence of the torsional bond
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interaction energy potential in the present simple model. The out-of-plane torsional bond interaction may
become more dominant among the total system energy during the shear response comparing with the ten-
sile response, particularly for small diameter nanotubes. Such effect is still under investigation. The tensile
and torsion strengths have been studied by using the present methods and the same accuracy has been
achieved compared to classical molecular mechanics/dynamics simulations. The armchair nanotubes pos-
sess higher tensile strength and failure strain than zigzag nanotubes. The shear performances of armchair
and zigzag nanotubes are almost identical with slightly different failure strains. It should be noted that the
present approach is much simpler than the classical molecular mechanics/dynamics model.
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